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NOMENCLATURE 

magnetic field strength; 
reference magnetic field strength; 
specific heat at constant pressure; 
dimensionless similarity stream function; 
acceleration due to gravity; 
dimensionless heat flux integral; 
vertical mass flow rate; 
constant introduced in equation (8); 
exponent introduced in equation (8): 
heat source strength per length; 
Prandtl number; 
vertical velocity ; 
horizontal velocity; 
vertical coordinate; 
horizontal coordinate; 
Lykoudis number. 

Greek symbols 

1, coefficient of thermal expansion; 
% similarity variable; 
@, tem~rature excess above undistur~ ambient; 
e WI wall temperature excess above undisturbed 

ambient; 
K, thermal diffusivity; 
B> dynamic viscosity ; 
v, kinematic viscosity; 
PV fluid density; 
c, electrical conductivity ; 

wall shear stress; 
normalized temperature similarity function; 
stream function. 

INTRODUCTION 

THIS work examines the effect of a horizontal magnetic field 
on the steady laminar plume rising from a horizontal line 
heat source on a vertical adiabatic wall. One motivation for 
this study is the possibility that magneto fluid mechanic 
wall plumes may need to be accounted for in nuclear fusion 
reactor blankets. Some conceptual designs call for a blanket 
consisting of a nominally stagnant body of liquid metal or 
molten salt traversed by coolant~arrying tubes. These 
would generate negatively buoyant line plumes in a region 
of strong magnetic fields. Although the present theory is 
too idealized for direct application in such a design, it can 
be expected that the qualitative insights it provides will be 
useful. 

Zimin and Lyakhov [I] were the first to discover that the 
non-magnetic laminar wall plume exhibits similarity within 
the context of the Boussinesq-boundary layer approxi- 
mation. They compared a numerical solution for Pr = 7 
with experimental- data in water and found excellent 
agreement. Liburdy and Faeth i-21 independentlv dis- 
covered a somewhai more general c&ilarity iransformation 
which allows for certain fluid property variations. They 
presented numerical solutions for Pr = 0.01, 0.1, 0.7, 1, 10, 
and 100. Jaluria and Gebhart [3], ~aware of [2], treated 
the constant property wall plume using a more convenient 

set of boundary conditions and reported numerical solu- 
tions covering the same range of Prandtl number. These 
studies showed that compared to an unconfined line plume 
of twice the heat flux, the wall plume has a lower peak 
velocity, a higher maximum temperature, and a greater 
thickness. These deviations become more pronounced as Pr 
increases. 

Grella and Faeth [4] reported an experimental in- 
vestigation of a turbulent wall plume in air. 

ANALYSIS 

A horizontal line heat source is assumed to lie along the 
surface of a vertical adiabatic plate. The adjacent body of 
fluid is unstratified and is subject to a uniform gravitational 
force. A right-handed rectangular coordinate system is 
chosen so that the heat source lies along the z-axis, the 
positive x-axis points upward, and the positive y-axis 
extends into the fluid. The applied magnetic field is 
primarily in the y-direction and is a function only of x. 
There is no externally imposed electric field and the plate is 
electrically insulated from the fluid. The currents induced 
by the fluid motion close through a distant electrical circuit 
of perfect conductivity. Ohm’s Law applies to the fluid and 
the magnetic Reynolds number is assumed small so that 
distortions of the applied magnetic field can be neglected. 
The variation of temperature is assumed to be small 
enough that density variations can be neglected, except in 
the buoyancy term of the vertical momentum equation, and 
all other fluid properties can be treated as constants. With 
viscous and Joulean dissipation neglected, the laminar 
boundary layer equations are: 

aU+d”=O 
ax ay 

a% u~+v~~v-+LYgs-~*% 
aY w (2) 

P 

at? a% a9 
u-+v--=K-. 

ax ay ayz 
Following Jaluria and Gebhart [3], the following boundary 
conditions are imposed: 

u(x, y = 0) = 0 (4) 

v(x, y = 0) = 0 (5) 

u(x, y = to) = 0 (6) 

a@ 
x- = 0 
WlY=O 

0(x, y = 0) = 8, = Nx”. (8) 
Equations (4), (S), and (7) reflect the non-slip, impermeable, 
adiabatic nature of the wall. Equation (6) says that the 
vertical velocity induced by the heat source vanishes far 
from the plate. The power-law variation of wall tempera- 
ture specified by equation (8) yields consistent similarity 
solutions and allows the requirement of zero temperature 
excess far from the wall to be dropped as redundant, thus 
simplifying the numerical computations. 
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FIG. 1. Velocity similarity functions for Pr = 0.01, Z,, = 0, 0.5. 1 

FIG. 2. Temperature similarity functions for Pr = 0.01, Z,. = 0.0.5, 1. 

In order to satisfy identically the continuity equation, a 
stream function is defined with the positive sign associated 
with u. The following transformations are then introduced: 

(I, = [64c((1”2N]‘:4.u3’5f‘(rl) (10) 

0 = N.u”d(r/). (11) 
Because the wall is adiabatic and vertical conduction is 
assumed negligible, the power dissipated by the heat source 
must be convected across each overlying horizontal plane. 
This condition allows the exponent n to be determined. 

Q=PC, = 
I 

uOdy = pC,N(64rgN~2)“4X’5”+3)‘4 
0 

Since Q is not a function of .v, 

II = -3 5. (12) 

Defining 

implies that 

NE --~ 
! 

(14) 

When equations (9)-(14) are introduced into the vertical 
momentum equation (2) it is seen that similarity is possible 
only if the magnetic field has the following variation: 

B = B 0 X-2,‘5, (15) 

In a strict sense such a field is inconsistent with Ampere’s 
Law in the MHD approximation (as is the neglect of the 
induced field). Geometrically speaking, the field lines must 
exhibit some curvature. Nevertheless, the necessary curva- 
ture is small and the required field can be approximated 
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FIG. 3. Velocity similarity functions for PI = 10.0, Z,. = 0, 0.5, 1 

FIG. 4. Temperature Similarity Functions for Pr = 10.0, Z, = 0,0.5, 1. 

very accurately in the region of non-negligible velocities. 
Equations (9))(15) transform equations (2)-(8) into the 
following set of coupled nonlinear ordinary differential 
equations: 

f”‘_4f’f’+~ff”+~-Z,f = 0 (16) 

4” +yPr(f+)’ = 0 (17) 

f(0) = 0 (18) 
f'(O)= 0 (19) 

f'(s) = 0 (20) 
cp'(0) = 0 (21) 
4(O) = 1, (22) 

where 2, = 2(o/p)Bi(aghT)- I” is the Lykoudis number, a 
measure of the ratio of the ponderomotive force to the 

square root of the buoyancy force times the inertial force, 
and Pr is the Prandtl number. 

The solution of equations (16)-(22) was obtained 
numerically using a fourth-order RungeKutta program. 
Satisfaction of boundary condition (20) was approached 
asymptotically using the iterative algorithm of Nachtsheim 
and Swigert [5]. Solutions were calculated for Lykoudis 
numbers of 0, 0.5, and 1, as the Prandtl number ranged 
from 0.01 to 100. Representative results are presented in 
Table 1 and Figs. l-4. 

The physical velocities are related to the similarity 
variables by: 

(23) 

(24) 
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Table 1. Wall plume parameters 

I+ z,. )Imax 

100 0 11.0 
0.5 9.0 
1.0 11.0 

10 0 11.0 
0.5 10.0 
1.0 8.0 

I 0 11.0 
0.5 11.0 
1.0 11.0 

0.1 0 24.0 
0.5 21.0 
1.0 27.0 

0.01 0 102.0 
0.5 56.0 
1.0 49.0 

f”(O) I 

0.37672 0.20636 0.021001 
0.35254 0.11137 0.019808 
0.33789 0.084434 0.019076 

0.61059 0.38320 0.10675 
0.55871 0.28680 0.098935 
0.52 173 0.23742 0.093212 

0.88725 0.77581 0.447 12 
0.79080 0.7oOQo 0.41325 
0.71436 0.63751 0.38400 

1.1380 2.1298 1.4893 
0.97417 2.0016 1.3903 
0.84633 1.8862 1.2972 

1.3033 6.62 4.72 
1.0733 6.27 4.42 
0.903 12 5.85 4.13 

The wall shear stress is: 

and the vertical mass flow rate is: 

As a consequence of the boundary layer approximation, the 
solution is not valid too near the heat source or for 
negative X. At some distance above the heat source the 
plume may become turbulent, but it is expected that 
stabilizing effects of the wall and the magnetic field should 
combine to produce an extended laminar regime. 

RESULTS AND DISCUSSION 

The effect of the magnetic field enters the expressions for 
velocity and temperature in three ways. As the figures 
illustrate, the profiles of f’ and 4 are altered as Z, 
increases. This leads to a change in the value of I which in 
turn changes the coefficients in equations (11) and 
(23))(26). The change in I also alters the q value of a given 
physical location as shown by equations (9) and (14). 

Figure 1 shows that for Pr = 0.01 (typical of liquid 
metals), the peak value of .f’ decreases as Z, increases. 
Figure 2 indicates that the corresponding temperature 
similarity function 4 becomes wider as Z, increases. As 
expected, the velocity and temperature fields are of 
comparable width for low Pr natural convection. 

In Figs. 3 and 4 profiles are presented for Pr = 10.0, a 
value representative of molten salts [6]. Figure 3 shows 
that the peak value off’ is decreased by the magnetic field, 
and Fig. 4 indicates that 4 becomes wider. In this case it is 
seen that the velocity profile is much wider than the 
temperature profile. 

Solutions were obtained for the values of Pr and Z, 
listed in Table 1, and in all cases an increase in Z, causes a 
reduction in the peak value off’ and a broadening of 4. 
The percentage reduction of the peak value off’ caused by 
an increase in Z, from 0 to 1 rises smoothly from 20% at 
Pr = 100 to 32% at Pr = 0.01. Table 1 shows that the 
values of f”(O), f(x), and I all decrease with increasing Pr 
and Z,. Similar trends occur in the case of the unconfined 
magneto fluid mechanic line plume [7]. Although it is not 
immediately apparent, further consideration of equations 
(23), (25) and (26) shows that for any given fluid, the peak 
vertical velocity, wall shear stress, and vertical mass flow 
rate are all reduced by increasing Z,. Wall temperature, on 
the other hand, increases with Z,. The percentage reduction 
of the peak vertical velocity due to a change in Z, from 0 to 
1 increases monotonically from 17”); at Pr = 100 to 28% at 
Pr = 0.01. The corresponding reduction in wall shear stress 
increases steadily from 5”/;, at Pr = 100 to 250,; at Pr = 0.01. 

As in the case of the unconfined magneto fluid mechanic 
line plume, laboratory experiments using liquid metals and 
molten salts are feasible for the wall plume [7]. The 
solution should be valid from a level somewhat above the 
heat source to the level at which transition to turbulence 
begins. 
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